
Abstract - This paper presents the design of control systems
with uncertainties of plant parameters and immeasurable
arbitrary external disturbances. To enable the zero steady
state error in tracking of a reference signal, the concept of
internal model is applied, which utilizes the principle of
disturbance absorption. Tsypkin's IMPACT control structure
(Internal Model Principle and Control Together) is employed
in the case of minimal phase stable plant and presence of an
arbitrary class of unmeasured disturbances. The adaptation
mechanism is introduced into the control portion of the system
in order to reject as much as possible the influence of
disturbance on the system controlled variable.  The control
structure proposed in this paper enables the efficient
extraction of disturbance and reveals a higher degree of
robustness with respect to uncertainties of plant parameters.

Index terms - IMPACT structure, generalized disturbance,
absorption principle, adaptation algorithm.

I. INTRODUCTION

The main task in control system design is the tracking of a
reference signal with sufficiently small or zero steady-state
error in the presence of unknown disturbance. In many
applications, the designer knows an amount of apriori
information about the class of disturbances and limits of
interval changes or uncertainties of plant parameters. It is
known that the knowledge about missmaches of plant
parameters is necessary for the robustness analysis in the
design of control systems with internal models [1], [2].
Most frequently an external disturbance may be modeled as
a solution of homogenous differential or difference
equation. In such case, it is possible to include the
disturbance model into the control portion of the system in
order to extract completely influence of disturbance on the
steady-state value of system output [1]. Essentially, this
design procedure is based upon the application of the IMP
(Internal Model Principle).

The idea of absorption principle has been primarily
presented in the seminal work of Kulebakin [3] who
examined the invariance conditions and introduced the
concept of so-called selective invariance in the control
system  theory.   Johnson   [4]   used  this  principle  in  the
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servomechanism design. Davison [5] applied a similar
approach of using the internal disturbance model for the
rejection of disturbance. Solving the regulator problem in
multivariable control systems,  Francis and Wonham [6],
[7] came to a conclusion that for disturbance rejection it
was necessary to include the disturbance model into the
control part of the system.  As a matter of fact, IPM was
inspired by results of works by Francis and Wonham [6],
[7]. In [4] - [7], internal models of disturbance are given by
state variables. For the first time, Bengtsson [8] applied
IMP in the frequency domain. Furthermore, in a survey
paper [9], IMP is approved as a fundamental concept in
control system theory. Utilizing results of Shannon [10] and
Kulebakin [3], Tsypkin [11] expressed concisely the
principle of absorption for digital control systems. At the
same time, he defined the generalized disturbance and
examined the possibility of its extraction [2]. The
absorption principle has been advantageously applied in the
design of a robust Smith predictor for a integrating process
with long dead time [12].  The IMP and principle of
absorption are based upon the same fundamental idea of
inclusion disturbance model into the system controlling
structure.

In this paper, the principle of absorption is formulated in a
discrete form and then it is applied to reject unmeasured
disturbances in digital control systems. To enable extraction
of an apriori unknown disturbance, the suitable modification
of IMPACT structure is proposed. Within the control
portion of the structure, the real-time adaptation mechanism
is included, which estimates the disturbance and adapts the
internal disturbance model. In [1], the general design
algorithm of IMPACT structure is given in details. In this
paper, the design procedure is related to only digital control
systems with stable and minimal phase plants.

II. PRINCIPLE OF ABSORPTION

Suppose that kth sample of external disturbance w t( )  may
be determined by finite number m0  of previous samples.
Then, the disturbance is regular and may be described by
extrapolation equation [10]

                   ))1(()z()( 1 TkwDkTw w −= −                        (1)

where Dw ( )z−1   is  the  prediction  polynomial of order    mo

-1. Equation (1) may be rewritten as
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where w z( )−1  denotes the z-transform of disturbance.
Relation (2) is called compensation equation and FIR filter
having the pulse transfer function ( ( ))1 1 1− − −z D zw  is the
absorption filter or the compensation polynomial [2], [11],
[13].

Absorption filter Φw wz z D z( ) = ( )− − −−1 1 11  is designed for a
known class of disturbances and its impulse response
becomes identically equal to zero after n sampling instants,
where n ≥ mo. Hence, the compensation equation (2) may be
considered as the absorption condition of a given class of
disturbances. The condition can be expressed as

.)(degfor ,0)()( 11 TkTtzwz ww Φ≥==Φ −−         (3)

The extrapolation polynomial )( 1−zDw  is determined by an
apriori information about disturbance w t( )  [2], [11], [13];
nevertheless, it is simply resolved from [1]  as
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In the case of a stochastic disturbance s(t), absorption filter
(4) should suppress as much as possible affects of
disturbance on the system output. Thus, for a law frequency
disturbance s(t),  which can be generated by double
integration of the white noise, an appropriate choice of
absorption filter is Φs z z( ) ( )− −= −1 1 21  that corresponds to
absorption of linear (ramp) disturbance [12], [13].

In [2], the absorption principle is generalized to enable the
extraction of parameter disturbances. Namely, changes of
system output due to differences between the real and
nominal plants may be treated as a parameter disturbance

pϕ  that influences the system output. Thus the generalized
system disturbance ϕ  = pϕ +w comprises the external
disturbances and uncertainties of plant parameters. Hence,
the real plant may be considered as the nominal plant
subjected to the generalized disturbance ϕ . If the system is
robustly stable, the parameter disturbance is regular and its
absorption is possible, i.e.,

TkTtzz ppp )(degfor ,0)()( 11 Φ≥==Φ −− ϕ          (5)

with

)(1)( 111 −−− −=Φ zDzz pp                        (6)

where )( 1−Φ zp  and D zp ( )−1  denote the compensation and
prediction polynomials of ϕ p , respectively.

According to (3) and (5), the absorption condition of
generalized disturbance ϕ ϕ= +p w  becomes

TkTtzzz pwpw )deg(deg ,0)()()( 11 Φ+Φ≥==ΦΦ −− ϕ       (7)

or

TkTtzz )(degfor ,0)()( 11 Φ≥==Φ −− ϕ             (8)

where Φ ( )z−1  denotes discrete absorption filter of
generalized disturbance.

The design of absorption filter greatly depends upon the
amount of apriori information about the disturbance. If the
class of disturbance is known in advance (constant, slow
varying, ramp, sinusoidal with known radial frequency, etc),
the absorption filter can be designed exactly; otherwise, the
design of absorption filter becomes more difficult. If the
class of disturbance is unknown, the disturbance is to be
predicted by evaluating of disturbance signal in each
sampling instant. Namely, the coefficient vector θ~  in
prediction polynomial )~ ,z( 1 θ−D  is to be fitted by the on-
line identification mechanism based on estimated
disturbance [11]. Consequently, the fitting of prediction
polynomial coefficients requires the on-line estimation of
disturbance. In the case of IMPACT control structure, the
information about the generalized disturbance is obtained
by including the nominal plant model into the control
portion of the system.

In a general case, let ε ( )kT  be an estimated value of
disturbance in sampling instant kT. Then, analogously to
(1), the following prediction relation is valid

).)1(()~ ,z()( 1 TkDkT −= − εθε                      (9)

Relation  (9) may be rewritten as vector equation

)(~)( T kTkT εψθε =                            (10)

where

.)])((),...,)2((),)1(([)( TTmkTkTkkT e−−−= εεεψ ε   (11)

The recurrence algorithm for estimation of coefficient
vector ~θ  is given as
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where Γo kT( )  is the gain matrix, which can be calculated in
different ways [11]; the simplest one is based on the
Kaczmarz algorithm

IkTkTkTo
1T )]()([)( −=Γ εε ψψ                   (13)

where I  denotes the unit matrix. In the presence of
stochastic disturbances, it is convenient to estimate ~θ  by
using the least square method [11].

III. IMPACT STRUCTURE

Fig.1 shows the IMPACT control structure proposed by
Ya.Z. Tsypkin [2], [11] - [14]. Actually, the structure in
Fig.1 represents the modified primary IMPACT structure
suited for control systems with stable plants. Within the
control portion of the structure (encircled with dotted lines)



two internal models are included: the nominal plant model
explicitly and the disturbance model embedded into the
discrete filter )(/)( 11 −− zCzA .  Due  to  uncertainties  of

plant parameters, the real plant given by W z( )−1  (Fig.1)
may be presented by

))(1)(()( 111 −−− += zWzWzW o δ                  (14)

Fig.1. IMPACT control structure
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represents the nominal plant model. Its perturbation is
limited by the multiplicative bound of uncertainties.

.,0),()( ][∈≤− TeW Tj πωωαδ ω                   (16)

According to Fig.1 and Eqs. (14) and (15), one derives the
error signal e z( )−1  as
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where, for the sake of brevity, complex variable z−1  is
omitted from notations of variables.

As it has been shown [1],[13], polynomials P zy ( )−1  and
)( 1−zR  are obtained by solving the Diophantine equation

[15]

z P z P z R z Q z K zk
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where K zde ( )−1  denotes the desired closed-loop system
characteristic equation. Stable polynomials C z( )−1  and
C zr ( )−1  in (17) are to be chosen according to the desired

degree of system robustness with respect to mismatching of
plant parameters. As a matter of fact, the determination of
polynomials P zy ( )−1 , R z( )−1 , C z( )−1 , and C zr ( )−1  may be
observed as the solution of pole-placement problem [15].
The choice of polynomials  K zde ( )−1 , C z( )−1 , and C zr ( )−1

influences the dynamic performance of closed-loop system

and, on the other hand, it effects the robustness and filtering
properties of the system. Since the reference signal

r(t) is not noise contaminated and because the feedforward
compensator does not affects the system robust stability,
one may assume C zr ( )− ≡1 1 . A possible choice of
characteristic polynomial K zde ( )−1  is proposed in [13] as
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which corresponds to a strictly aperiodical closed-loop
system step response. Smaller values of natural number n
and parameters bi  correspond to higher speed of system
response and lower degree of system robustness. Thus in
tuning of n  and bi , it is necessary to start with certain value
of n and smaller values of bi  and then to increase bi

gradually. If for allowable values of bi  the criterion of
robust stability is not satisfied, the value of  n  should be
increased to next integer and so on. Note that the system
robustness may be improved by an appropriate choice of
stable polynomial C z( )−1 . However, polynomial C z( )−1

that improves the system robustness, at the same time,
reduces the speed of disturbance absorption and vice versa.

The absorption conditions of external disturbance w(t) and
reference input r(t) are derived from the absorption
principle and relation (17) as
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where, for the sake of brevity, z−1  is omitted in notations of
variables.



 Solving Diophantine equations (21), one obtains
polynomials A zr ( )−1  and A z( )−1 , within the control part
of IMPACT structure in Fig.1, and polynomials B zr ( )−1

and B z( )−1 . Since reference signal r(t) is known in advance,
absorption polynomial Φr z( )−1  may be chosen immediately
[see Eqs. (3) and (4)]. However, absorption polynomial
Φ ( )z−1  depends upon an apriori information about the class
of external disturbance w(t). The often choice is
Φ ( ) ( )z z− −= −1 1 21  that, according to (3) and (4),
corresponds to the absorption of ramp disturbances. As it
has been shown [1], [12], [13], the polynomial
corresponding to absorption of ramp disturbances enables
the efficient rejection of slow varying disturbances and even
it suppresses affects of low frequency stochastic
disturbances on the system output. Of course, the efficiency
of disturbance rejection is improved by increasing the
sampling rate [1]. Hence, polynomials A zr ( )−1  and A z( )−1

represent the implicit internal model of disturbances and
they are determined by absorption polynomials Φr z( )−1  and
Φ ( )z−1 , respectively [13]. It is to be noted that single
solutions of Diophantine equations (18) and (21), which
play crucial roles in the design procedure of IMPACT
structure, do not exist. The solution existence is discussed in
[15]. The procedure of solving (18) and (21), proposed in

[15], yields polynomials P zy ( )−1 , )( 1−zR , A zr ( )−1 ,  and
A z( )−1   of lowest possible orders.

The IMPACT structure in Fig.1 may be conveniently
transfigured into the equivalent one shown in Fig. 2 in order
to extract signal ε

ε δ( ) ( ) ( ) ( ) ( )z w z u z W z W zo− − − − −= +1 1 1 1 1           (22)

from the output of one-input internal nominal plant model
[14]. From (22), it is seen that signal ε  represents an
estimate of influences that external disturbance w(t) and
perturbations (or uncertainties) of plant parameters produce
on the system output. Thus signal ε  is identical to
generalized disturbance and signal εu  is the portion of
control signal u, which compensates influences of
generalized disturbance (22). On the other hand, signal ε
(Fig.2) estimates the portion of signal output that is to be
compensated. The efficiency of compensation may be
measured by signal

).(ˆ)()( 111 −−− −= zzz εεξ                           (23)

If the IMPACT structure is able to reject the generalized
disturbance completely, signal ξ  becomes zero in the
steady state.

Fig.2.  Equivalent IMPACT structure

The steady-state value of estimation error ξ  of generalized
disturbance will exist if absorption polynomial Φ ( )z−1  is
not properly chosen due to an inadequate information about
the disturbance. In such case, the adaptation mechanism
based upon on-line minimization of ξ  may be utilized in
order to improve the system ability in extraction of
generalized disturbance [14].

Fig.3 illustrates the incorporation of the proposed
adaptation algorithm into the control portion of the
equivalent IMPACT structure in order to adapt coefficients
of polynomial
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with respect to external disturbance. Components ai  of
coefficient vector a are considered  as  variable  parameters
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Fig. 3. IMPACT structure with adaptation of internal model of disturbance

of the adjustable internal model of disturbance. These
parameters are adapted minimizing performance index
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by using the gradient method [16]. According to [16], the
general recurrence formulas of adaptation are

a kT T a kT kT i mi i i( ) ( ) ( ), , ,...+ = + ⋅ =γ ∆α 0 1        (26)

where ∆αi kT( )  determines the change direction of
parameter ai  at sampling instant kT ,
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while positive constant γ  is the iteration interval. Since,
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it follows from (27)
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The proposed iterative procedure converges to the desired
coefficient vector if positive constant γ  satisfies the
condition

0 < <γ γ c                                     (30)

where γ c  is the upper limit of convergence interval [16].
Usually, a value of γ  is assumed by chance and then the
convergence of iterative process is tested. To enable as fast
as possible iterative process, the initial guess of coefficient
vector a of polynomial ),( 1 azA −  is assumed according to
available apriori information about the disturbance.

IV. ILLUSTRATIVE EXAMPLE

Let the pulse transfer function of nominal plant is given by
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We assume the desired closed-loop system characteristic
polynomial

.3.01)( 11 −− −= zzK de                           (32)

The absorption filter

Φ ( ) ( )z z− −= −1 1 21                             (33)

is chosen to correspond to a linear approximation of
generalized disturbance. For the absorption of disturbance
from reference signal, the same absorption filter is assumed

Φ r z z( ) ( )− −= −1 1 21                             (34)

and then polynomials C z C zr ( ) ( )− −= =1 1 1 are chosen.

Using the outlined synthesis procedure, the following
polynomials of controlling structure are calculated
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In the adaptation mechanism, the initial guess of polynomial
A z( )−1  is assumed as

.001.8781047)( 3211
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 In successive sampling instants the polynomial coefficients
are adapted to external disturbance by using the proposed
adaptation mechanism with the value of γ = 5000  chosen
by simulation.

Adaptation
mechanism
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Fig.4. Absorption of unknown external disturbance by the
IMPACT structure with adaptation of internal model of

disturbance.

Fig.4 illustrates the efficiency of the IMPACT structure
with the proposed adaptation mechanism in extraction of
external disturbance about which we have a small amount of
apriori information. The figure shows, as functions of
discrete time kT, reference signal r, system output y,
tracking error e = r - y, and disturbance w which is
supposed to be unknown in advance. For comparison, in
Fig.5, the tracking errors are shown for ordinary IMPACT
structure (solid trace) and for IMPACT structure with the
adaptation mechanism (dotted trace). According to the
measure of performance
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the adaptation algorithm of internal disturbance model
contributes for 37% to the efficiency of disturbance
rejection.
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Fig.5.  Tracking errors: e1 in the presence of adaptation, e2 without
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V. CONCLUSION

The structural design of digital control system for tracking
of a reference trajectory in the presence of unknown
external disturbances has been developed in this paper. The
IMPACT controlling structure, which comprises both the
internal nominal plant model and internal disturbance model
within the control portion of the structure, is applied. The
suitable adaptation mechanism of internal disturbance
model is employed to enable the tracking even in the case
when there is a very small amount of apriori information
about the external disturbance.
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